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Abstract Pacific halibut collected in the Aleutian Islands,

Bering Sea and Gulf of Alaska were used to test the

hypothesis of genetic panmixia for this species in Alaskan

marine waters. Nine microsatellite loci and sequence data

from the mitochondrial (mtDNA) control region were

analyzed. Eighteen unique mtDNA haplotypes were found

with no evidence of geographic population structure. Using

nine microsatellite loci, significant heterogeneity was

detected between Aleutian Island Pacific halibut and fish

from the other two regions (FST range = 0.007–0.008).

Significant FST values represent the first genetic evidence

of divergent groups of halibut in the central and western

Aleutian Archipelago. No significant genetic differences

were found between Pacific halibut in the Gulf of Alaska

and the Bering Sea leading to questions about factors

contributing to separation of Aleutian halibut. Previous

studies have reported Aleutian oceanographic conditions at

deep inter-island passes leading to ecological discontinuity

and unique community structure east and west of Aleutian

passes. Aleutian Pacific halibut genetic structure may result

from oceanographic transport mechanisms acting as partial

barriers to gene flow with fish from other Alaskan waters.

Keywords Pacific halibut � Alaska � Population genetics �
Microsatellites � mtDNA

Introduction

Pacific halibut (Hippoglossus stenolepis) are distributed

across the North Pacific Ocean from California to the

northern Sea of Japan (Allen and Smith 1988; Mecklenburg

et al. 2002). Pacific halibut represent an important com-

mercial, sport, and subsistence fishery resource throughout

the eastern Pacific Ocean. This flatfish has been fished by

indigenous peoples for thousands of years and has sustained

intensive commercial harvest for the last century with a rate

of *70 million pounds per year harvested over the last

decade (IPHC 1998, 2001; Wilderbuer et al. 2005). Despite

the commercial and social importance of this species, little

is known about population structure throughout its geo-

graphic range. Previous studies have attempted to define

population structure for Pacific halibut using allozymes

(Tsuyuki et al. 1969; Grant et al. 1984), microsatellite loci

(Bentzen et al. 1998; Hauser et al. 2006), parasite load

(Blaylock et al. 2003) and tagging experiments (Skud 1977;

Seitz et al. 2003; Loher and Seitz 2006b), but only weak

evidence has been shown to support discrete populations.

Pacific halibut are large (up to 250 kg) benthic, highly

migratory marine fishes that spawn at depth during the

winter spawning season (Thompson and Van Cleve 1936;

Best 1981). In the eastern Pacific Ocean these fish are

managed by the International Pacific Halibut Commission

(IPHC) as a single panmictic population or stock (Clark

and Hare 2000). This management structure is based pri-

marily on long-term tagging studies over the last 80 years

demonstrating significant marine adult migrations (Skud

1977; Kaimmer 2000) and evidence from larval drift
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studies showing northwestern drift of larval halibut from

the Gulf of Alaska into the Bering Sea (Skud 1977).

However, concerns about local depletion of Pacific halibut

in commercial fisheries (Hare 2004) and evidence of

migration patterns from recent electronic tagging studies

(Seitz 2006) have suggested that marine habitat disconti-

nuities and fidelity to unique spawning locations may

support localized population structure.

Population genetic theory predicts that intraspecific

divergence occurs over different scales of time and space

(Avise et al. 1979, 1987). Geologic and hydrologic barriers

that limit gene flow have been well described in freshwater

and terrestrial systems, but their impacts on genetic pop-

ulation structure in the ocean remain poorly documented

(Palumbi 1994). In addition to absolute barriers to gene

flow, population segregation can derive from spatial and

environmental conditions that limited dispersal at different

life stages (Palumbi 1992, 1994). Vicariance, ecology and

physical factors limiting dispersal can play important roles

in marine fish population genetic structure (Waters et al.

2000; Ringinos and Nachman 2001; Cowen et al. 2006).

Not all individuals within a species behave in a predicted

manner when subject to environmental factors leading to

genetic segregation (Bernardi et al. 2003). Intraspecific

segregation can operate across a broad set of dimensions

and robust inference on population structure is not neces-

sarily limited to extremes in distance or time (Brown and

Stepien 2008).

Studies have suggested physical oceanographic condi-

tions may have significant impacts on population structure of

marine fishes at different geospatial scales (Grant and Bowen

1998; Able et al. 2005; Knutsen et al. 2007; Eckert et al.

2008). Analyses of physical oceanography and bathymetric

barriers have been shown to influence population structure

of some marine flatfishes (Hemmer-Hansen et al. 2007;

Knutsen et al. 2007; Larsen et al. 2007). A recent study of

Greenland halibut (Reinhardtius hippoglossoides) demon-

strated that spawning location, transport depth, and fresh-

water inflow rates were important factors influencing the

settlement and distribution of juvenile Greenland halibut in

the north-east Arctic (Ådlandsvik et al. 2004). Spencer

(2008) documented that the distribution of several flatfish

species in the Bering Sea since 1982 were correlated with

movements of the oceanic ‘cold pool’ (bottom water \2�C).

However, genetic analyses of most marine species including

flatfishes have shown only weak or limited population

genetic substructure across broad geographic areas, sug-

gesting that significant mixing prevents the development or

maintenance of genetically differentiated stocks (Vis et al.

1997; Hoarau et al. 2002a, b; Reid et al. 2005; Florin and

Höglund 2007).

Genetic studies of Pacific halibut are also limited. Tsuyuki

et al. (1969) analyzed a single protein (an iron-binding

serum transferrin/hemoglobin) for polymorphisms in

Pacific halibut taken from the eastern Bering Sea, north-

eastern Pacific Ocean and southern British Columbia; no

geographic relationship between alleles or allele frequen-

cies was found. Analyses by Grant et al. (1984) using 35

allozyme loci indicated no differentiation between Gulf of

Alaska and Bering Sea Pacific halibut samples, but repor-

ted heterogeneity between a Japanese sample and the other

ocean regions at one allozyme locus (adenine deaminase,

Ada). Bentzen et al. (1998) developed three microsatellite

loci in H. stenolepis, but these loci were considered too

polymorphic (observed heterozygosity [93%) to detect

regional-scale genetic structure for samples taken from

Russia, Gulf of Alaska and Washington state. Heterozy-

gosities at the three loci studied by Bentzen et al. (1998)

reached or approximated the limiting value of 100% which

limited their utility in detecting population subdivision.

Pairwise FST estimates among regions were extremely low

(FST range = 0.0009–0.003) and insignificant; however,

significant locus-specific heterogeneity was reported

between Russia and Washington samples at two loci

(P = 0.015 and 0.023) and between Russia and Gulf of

Alaska at one locus (P = 0.008). These results suggest a

weak east–west axis for Pacific halibut population struc-

ture in the North Pacific Ocean. Hauser et al. (2006) suc-

cessfully optimized a suite of 14 microsatellite loci

previously described for Atlantic halibut (Hippoglossus

hippoglossus) for amplification in Pacific halibut and

examined allele frequencies from three sites: Newport OR,

St. Paul Island in the Bering Sea and Adak Island in the

Aleutian Archipelago. Hauser et al. (2006) reported no

significant genetic differentiation among the three sites

using standard measures. However, permutation tests

yielded significant FST results at the 10% level in pairwise

comparisons between the Adak sample and samples from

the other two sites.

Linking genetic diversity with highly variable physical

forces that help drive population structure is clearly a key

to understanding fine-scale genetic population structure in

marine fishes (Grant and Bowen 1998; Hemmer-Hansen

et al. 2007). Many studies have suggested that population

structure of benthic marine fishes is influenced by larval

transport dependent on oceanic current systems and wind

patterns (Parker 1989; Koutsikopoulos et al. 1991; Nielsen

et al. 1998; Stepien 1999; Bailey and Picquelle 2002;

Wilderbuer et al. 2002; Knutsen et al. 2007). Benthic

species can experience genetic homogenization as a con-

sequence of mixing during the transport of pelagic eggs

and larvae despite geographically distinct spawning loca-

tions (Hauser et al. 2006; Rooper et al. 2006; Bailey et al.

2008). Well described oceanographic currents flowing

from the Gulf of Alaska into the Bering Sea (Stabeno et al.

1999, 2002; Ladd et al. 2005) have been suggested as the
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transport mechanism leading to genetic homogenization

among Pacific halibut populations in Alaska (Skud 1977;

St. Pierre 1989; Hauser et al. 2006).

Data directly linking Pacific halibut biology and

oceanography are scarce (see however, Parker 1989; and

for other marine flatfishes see Werner et al. 1997 and

Bailey et al. 2005). Currently, there are no data for Pacific

halibut demonstrating how adults locate spawning grounds,

if there is year-to-year fidelity for those locations, or if

ocean conditions at these locations contribute to local

adaptation by facilitating egg and larval transport and

subsequent retention in nursery habitats (see however,

Norcross et al. 1999; Seitz et al. 2007). There are still many

unanswered questions about the egg stage and larval drift

in this species that can spawn at over 500 m depth off the

continental shelf with complex ontogenetic requirements to

reach nearshore nursery habitats (Norcross and Shaw 1984;

Bailey et al. 2008). Egg and larval transport are particularly

enigmatic in Pacific halibut where nursery habitats are at

such great distance from deep water spawning grounds and

larval drift patterns are frequently orthogonal to prevailing

surface currents (Bailey et al. 2008).

In this paper we examine fine-scale genetic population

structure in adult Pacific halibut collected at three geo-

graphically distinct locations in Alaska where adult halibut

movements have previously been studied using Pop-up

Archival Transmitting (PAT) tags (Seitz et al. 2003, 2007;

Loher and Seitz 2006a, b). Coupling physical oceanogra-

phy with genetic population data allowed us to hypothesize

that weak, but significant, population genetic structure

described for Pacific halibut in the central and western

Aleutian Islands may result from ocean conditions unique

to that area.

Materials and methods

Sample collections and DNA extraction

A total of 228 adult Pacific halibut samples were collected

during monitoring and tagging cruises in three regions in

Alaska (Fig. 1; Table 1). Aleutian Islands samples were

collected June–August, 2003 near Atka Island (N = 27)

and Attu Island (N = 39); Bering Sea samples were taken

near St. Paul Island in August, 2002 (N = 57); and Gulf of

Alaska samples were collected from Aialik Bay (N = 36),

Harris Bay (N = 53) and Resurrection Bay (N = 16) in

March–July, 2001.

Non-lethal samples of caudal fin tissue were removed

from each fish and stored in pre-labeled vials containing

100% ethanol. Fin tissue samples were transported to the

USGS Alaska Science Center for DNA extraction and

genetic analyses using microsatellite and mitochondrial

DNA (mtDNA) loci. Genomic DNA was extracted from fin

tissue using a Puregene Tissue kit (Minneapolis, MN)

following the manufacturer’s instructions.

Microsatellite loci development

Three microsatellite loci (Hst7a, Hst14, and Hst17) were

developed and optimized in our laboratory using a partial

genomic library derived from H. stenolepis. Cloning of

microsatellite loci was based on the procedure reported in

Kandpal et al. (1994). Genomic DNA extracted from H.

stenolepis was digested with the Sau3A1 restriction

enzyme and size fractioned in a 1.2% agarose gel. Frag-

ments ranging from 400 to 1,500 base pairs (bp) were

purified and ligated to Sau3A linkers. Linker-ligated

Fig. 1 Map of regional

sampling locations for Pacific

Halibut collected in this study.

Aleutian Island samples—(1)

Attu Island (N = 39) and (2)

Atka Island (N = 27); Bering

Sea samples—(3) St. Paul

Island (N = 57); Gulf of Alaska

samples—(4) Harris Bay

(N = 53), (5) Aialik Bay

(N = 36) and (6) Resurrection

Bay (N = 16). Samalga and

Unimak passes are indicated
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products were amplified using a single oligonucleotide

primer based on the linker sequence and amplified products

were probed with (CA)12 and (GA)9 biotinylated repeats

(Operon Technologies, Huntsville, AL). Hybridized frag-

ments were captured and retained on a Vectrex Avidin

D matrix (Vector Laboratories, Inc., Burlingame, CA).

Fragments enriched with (CA) or (GA) repeats were eluted

from the Vectrex Avidin D matrix, ligated into the lacZa
gene of the pCR�2.1 cloning vector and transformed into

One Shot� INVaF’ chemically competent Escherichia coli

cells (Invitrogen, Carlsbad, CA). Transformed cells were

grown on Luria Bertani (LB) agar containing ampicillin

(100 mg/ml) and X-gal (5-Bromo-4-Chloro-3-Idoly-b-D-

Galactopyranoside; 20 mg/ml).

Positive E. coli colonies (white) were individually sub-

cultured in LB-ampicillin broth and cloning vectors

pCR�2.1 were isolated using the Wizard Plus � Miniprep

DNA Purification System (Promega, Madison, WI). Iso-

lated pCR�2.1 cloning vectors were bi-directionally

sequenced using a SequiTherm EXCEL II DNA Sequenc-

ing Kit (Epicentre Biotechnologies, Madison, WI).

Sequences were visualized on a LI-COR Model IR2

automated fluorescent DNA sequencer, proofed using

AlignIR software (LI-COR, Lincoln, NE) and assessed for

microsatellite repeats. Initial primer development used

Primer3 (Rozen and Skaletsky 1998). Prospective micro-

satellite loci were amplified in H. stenolepis and assessed

for polymorphism. Subsequent primer optimizations (if

required) were developed by eye.

Microsatellite loci amplification

Thirty-two microsatellite loci were surveyed for this study,

17 from the published literature on flatfishes and 15

developed in our laboratory from our Pacific halibut partial

genomic library (complete list available upon request from

author). We selected loci for analyses based on ease of

amplification and the competency and reliability of allelic

structure on the LI-COR platform. Extensive quality con-

trol of results using blind scoring by two independent

reviewers was implemented. A subset of samples ([10% of

samples) were rerun on new gels to limit probability for

genotyping errors. Nine loci were retained in our analyses:

six microsatellite loci developed from other flatfish species

and three microsatellite loci developed and optimized for

this study (Table 2). Microsatellite loci were amplified

using the polymerase chain reaction (PCR) in 10 ll vol-

umes containing 25–50 ng of genomic DNA, 10 mM Tris–

HCl (pH 8.3), 1.5 mM MgCl2, 50 mM KCl, 0.01% gelatin,

0.01% NP-40, 0.01% Triton X-100, 0.5–1 lM each unla-

beled primer, 0.5–1.5 lM labeled tail primer, 2 mM each

dNTP and 0.1 U of Promega Taq DNA polymerase

(Madison, WI). The PCRs were carried out in MJ Research

(BIORAD, Hercules, CA) or MWG thermocyclers (MWG

Biotech Inc., High Point, NC) with an initial denaturation

time of 2 min at 94�C followed by 40 cycles of 94�C for

15 s, 50�C for 15 s, 72�C for 30 s and a final 30 min

elongation step at 72�C. Two loci, Hst7a and Hst14,

required an annealing temperature of 52�C. Primer

sequences for the amplification of microsatellite loci

developed in this study were: Hst7a forward (F) 50-GC

TCAGAGAAAACACACAGCA-30; Hst7a reverse (R) 50-
GCTGTTTGGGGAACTCAATG-30; Hst14 (F) 50- ATGG

GAAATGG ACATGGGTA-30; Hst14 (R) 50-GGAG

CTGGCAACAAAGACAT-30; Hst17 (F) 50-GCCCTCCT

GGTTTGTTGCC-30; Hst17 (R) 50-GTGAGTGGTGGACC

GTTGC-30.
PCR products were separated on 6% polyacrylamide

gels using a LI-COR Model IR2 automated fluorescent

DNA sequencer (LI-COR). To visualize alleles, each locus’

forward primers were synthesized with universal tails on

the 50 ends: Hhi51, Hhi56, Hhi59 and Hst17 were synthe-

sized with M13 (F) tails; Hhi3, Vva13 and Vmo17 with

M13 (R) tails; and Hst7a and Hst14 with T7 tails. Fluo-

rescently labeled primers complementary to the tailed

sequences were added to the PCR mixture to visualize

alleles. Allele sizes for specific samples at each locus were

determined relative to the M13 phage single nucleotide

ladder and these samples were used as internal size stan-

dards to accurately score alleles in subsequent gels. Gene

Table 1 Regional locations of Alaskan Pacific halibut (H. stenolepis) sampled for this study

Region Population (N) N Average # alleles Average AR Private allelic richness Ho He

Aleutian Islands Atka Island (27) 66 13.1 4.42 1.48 0.723 0.683

Attu Island (39)

Bering Sea St. Paul Island (57) 57 12.2 4.46 1.49 0.723 0.688

Gulf of Alaska Aialik Bay (36) 105 14.4 4.35 1.34 0.708 0.687

Harris Bay (53)

Resurrection Bay (16)

The number of samples per region (N), average number of alleles per locus, allelic richness (AR), private allelic richness across nine loci,

observed heterozygosity (Ho), expected heterozygosity (He), and the number of samples taken at the population scale (listed in parentheses) are

given for each geographic region
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ImagIR v4.05 software was used to assign allele scores (LI-

COR). Approximately 10% of all samples were indepen-

dently amplified and scored to verify allele sizes across all

loci for quality control. MICROCHECKER (van Oosterh-

out et al. 2004) was used to test for null alleles at all nine

loci.

Mitochondrial DNA

A 254 bp fragment of the mtDNA control region in H.

stenolepis was amplified using primers developed for

European plaice, Pleuronectes platessa L. (Hoarau et al.

2004). The forward primer, DLF (50-CCACCTCTAACTC

CCAAA GC-30), is located within the 30 end of the tRNA

proline gene, and the reverse primer, DLR (50-TGAAGGG

ATTTTGAGTCTTGG-30) occurs within the control

region. M13 (F) and M13 (R) tails were synthesized to the

50 ends of DLF and DLR primers, respectively, and fluo-

rescently labeled primers complementary to the tailed

sequences were incorporated into the sequencing reaction

mixture to illuminate the products. Bi-directional sequenc-

ing of the Pacific halibut mtDNA control region was done

using the SequiTherm EXCEL II DNA Sequencing Kit

(Epicentre Biotechnologies). Sequences were separated in

5.5% polyacrylamide gels, visualized on a LI-COR Model

IR2 automated fluorescent DNA sequencer and aligned

using AlignIR software (LI-COR).

Population genetic statistics

Allelic size ranges and the total number of alleles (NA) was

calculated for each locus with Microsatellite Toolkit v2.0

(Park 2001). Allelic richness (AR) and the average number of

private alleles across all nine loci were calculated using HP-

RARE v1.0 (Kalinowski 2005). Observed and expected

heterozygosity by locus (Ho and He, respectively) were cal-

culated for each region using ARLEQUIN v3.01 (Excoffier

et al. 2005). Probability tests for Hardy–Weinberg

equilibrium (HWE) were done for all regions combined and

independently for each region by locus and tests for linkage

disequilibrium between loci were performed using GENE-

POP v3.4 (Raymond and Rousset 1997). Weir and Cocker-

ham’s (1984) locus-specific measure of departure from

HWE (FIS) was generated to detect significant heterozy-

gosity excess (negative FIS values) or deficit (positive FIS

values) using GENEPOP v3.4. Genetic differentiations

between regions were tested with pairwise FST comparisons

using ARLEQUIN v3.01. A Bonferroni correction based on

the number of loci (P = 0.05/9 = 0.0056) was used to

evaluate significance in all tests (Rice 1989). Fishers exact

test comparing population pairs across all loci were per-

formed using GENEPOP. Using the computer program

SAMOVA 1.0 (http://web.unife.it/progetti/genetica/Isabelle/

samova.html) probabilities of partitions (barriers) of geo-

graphically adjacent sampling areas were analyzed based on

genotypic data for K = 2 and K = 3 (Dupanloup et al.

2002). Multiloci estimates of population differentiation

following standard ANOVA analogues (Weir and Cocker-

ham 1984; Michalakis and Excoffier 1996) were performed

using GENEPOP. Estimates of effective population size for

Pacific halibut by region were calculated using LDNe

(Walpes and Do 2008).

Mitochondrial DNA analysis

The H. stenolepis mtDNA sequence was confirmed by

alignment with the published sequence for the mtDNA

control region of the Japanese barfin flounder (Verasper

moseri) also in the Family Pleuronectidae (GENBANK

Accession #AB207249; Ortega-Villaizán Romo et al.

2006). Standard diversity indices (number of haplotypes,

haplotype diversity and nucleotide diversity) were assessed

by region and regional mtDNA haplotype frequencies were

analyzed using ARLEQUIN v3.01. AMOVA analysis of

haplotype diversity and Tajima’s D tests for selective

neutrality were performed using ARLEQUIN v3.01. A

Table 2 Characteristics of nine microsatellite loci used in this study

Locus Source Cloned repeat motif Developed in Range (bp) NA AR Accession number

Hhi3 Coughlan et al. (2000) (CA)32 Hippoglossus hippoglossus 147–245 40 7.76 AJ270780

Hhi51 Coughlan et al. (2000) (TG)8AG(TG)5 Hippoglossus hippoglossus 96–172 28 4.23 AJ270781

Hhi56 Coughlan et al. (2000) (GT)2AT(GT)12 Hippoglossus hippoglossus 181–223 11 3.17 AJ270785

Hhi59 Coughlan et al. (2000) (CT)2(GT)12 Hippoglossus hippoglossus 137–155 10 3.52 AJ270787

Hst7a This study (CT)9TTGTTT(CT)7 Hippoglossus stenolepis 169–209 14 3.91 DQ979362

Hst14 This study (CA)4TACTGTA(CA)15 Hippoglossus stenolepis 163–213 26 5.82 DQ979363

Hst17 This study (GT)13 Hippoglossus stenolepis 142–178 16 5.51 DQ979364

Vmo17 Ortega-Villaizán Romo et al. (2003) (GA)29 Verasper moseri 166–176 3 4.26 AB110623

Vva13 Ortega-Villaizán Romo et al. (2003) (CA)25 Verasper variegatus 101–125 13 1.50 AB110629

Allelic size ranges (bp base pairs); number of alleles (NA); allelic richness (AR) and the GENBANK accession number are given by locus
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haplotype minimum spanning tree was generated using

TCS v1.21 (Clement et al. 2000).

Results

Microsatellites

We found little difference in the average numbers of alleles

per locus and average allelic richness among halibut from

the three geographic regions (Table 1). Average private

allelic richness (Kalinowski 2004) was also similar across

the regions (Table 1). Allelic size ranges (base pairs), the

total number of alleles, allelic richness and GENBANK

accession numbers for loci evaluated in this study are

reported in Table 2. Evidence of linkage disequilibrium was

found between Hhi51 and Hhi59 (v2 = 32.56; P \ 0.000),

and between loci Hhi51 and Hst14 (v2 = infinity;

P \ 0.000) for all samples combined. Coughlan et al.

(2000) previously reported potential linkage disequilibrium

for other Atlantic halibut loci with Hhi51. Hst14 was the

only locus identified by MICROCHECKER to have a

potential null allele due to homozygous-excess (homozy-

gotes observed = 48; expected = 32). Allelic size distri-

bution for this locus was large (163–213 bp), but there was

no evidence for large allele drop out based on MICRO-

CHECKER analyses. All nine loci were in HWE for the

three regions combined. The Aleutian Islands sample was

significantly out of HWE at Hst14 due to heterozygote

deficit (FIS = 0.118, P = 0.003) and at Hhi56 due to het-

erozygote excess (FIS = -0.345, P = 0.000). The Bering

Sea and Gulf of Alaska samples were both out of HWE

at Hhi59 due to heterozygote excess (FIS = -0.377 and

-0.288, respectively).

Significant genetic differentiation based on FST pairwise

comparisons was found between the Aleutian Islands and

the Bering Sea (FST = 0.0083) and Gulf of Alaska

(FST = 0.0078) Pacific halibut collections (Table 3). No

significant genetic differentiation was detected between the

Gulf of Alaska and the Bering Sea halibut samples

(FST = -0.0021). Running FST analyses on our sample

locations collections without loci lacking HWE at the

population level did not significantly change our results.

FST analyses with dropped loci supported significant allelic

differences between the Aleutian Islands and the Gulf

of Alaska (FST = 0.0075) and the Bering Sea (FST =

0.0091). No significant differences in allelic frequencies

were found in these analyses between the Gulf of Alaska

and from the Bering Sea (FST = -0.0013).

Fisher’s exact tests for population pairs across all loci

gave similar non-significant results between the Gulf of

Alaska and Bering Sea halibut populations (v2 = 25.07;

df = 18; P = 0.123). Exact tests also supported significant

differentiation between the Aleutian and Gulf of Alaska

populations (v2 = infinity; df = 18; P = highly signifi-

cant) and between the Aleutian and Bering Sea populations

(v2 = infinity; df = 18; P = highly significant). AMOVA

analysis partitioned 99.5% of microsatellite allelic varia-

tion within populations. Only 0.4% of the variance was

found among locations. LDNe estimates of effective pop-

ulation size were Gulf of Alaska Ne = 324; Bering Sea

Ne = 280; Aleutian Islands Ne = 273. Upper 95% confi-

dence limits for all three Ne estimates were infinite under

both parametric and jackknife simulations.

Mitochondrial DNA

Eighteen haplotypes were detected with 13 variable

nucleotide positions (Table 4). The mtDNA control region

was sequenced from N = 95 samples taken at random

representing 35–44% of all samples from each collection

location within a region. H. stenolepis (HST) haplotype

frequencies by region are reported in Table 5. The Gulf of

Alaska sample contained eight unique mtDNA haplotypes:

HST3 (N = 3); HST4 (N = 2); HST5 (N = 4); HST7

(N = 1); Hst13 (N = 1); HST14 (N = 1); HST15 (N = 1);

HST16 (N = 1). Two halibut with unique haplotypes were

found in the Aleutians (HST10 and HST18) and one unique

haplotype occurred in one Bering Sea sample (HST17).

Genetic diversity was higher for mtDNA data (average

h = 0.818; Table 6) compared to microsatellite data

(average Ho = 0.718; average He = 0.686), but was sim-

ilar among the three geographic regions. Analyses of

groups of geographically adjacent samples using SAM-

OVA where K = 2, partitioned halibut populations east

and west (Group1 = Bering Sea and Gulf of Alaska;

Group2 = Aleutians; FCT = 0.382). However, SAMOVA

analysis when K = 3 with each population representing

one geographic group gave similar results FCT = 0.367).

Tajima’s D statistic (Aleutians Dt = -00.08; Bering Sea

Dt = -0.13; Gulf of Alaska Dt = -0.25) were not sig-

nificantly different from zero (P [ 0.05 in all cases) and

departures from neutrality under the Infinite Allele Model

(IAM) could not be differentiated from demographic fac-

tors. AMOVA results showed that only 1.45% of all hap-

lotype variation was found among the three regions; 98.5%

Table 3 Pairwise FST values and P-values (in parentheses) for

regional comparisons of Pacific halibut based on nine loci

Aleutian Islands Bering Sea

Bering Sea 0.0082 (0.001)

Gulf of Alaska 0.0069 (0.000) -0.0016 (0.797)

Significant differences between regions are indicated in bold
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was found within regions. Haplotype frequencies and the

haplotype minimum spanning tree also revealed no sig-

nificant geographic differentiation among the three regions

(Table 6; Fig. 2).

Discussion

Genetic diversity in Pacific halibut collected from three

geographically distant locations in Alaska was reported in

this study. These studies demonstrated weak but significant

east to west differentiation of halibut in Alaskan waters.

Microsatellite loci revealed statistically significant differ-

ences in allelic frequencies for Pacific halibut collected off

Attu (western Aleutians) and Atka (central Aleutians)

islands when compared to fish from the two proximate

Alaskan shelf regions (Gulf of Alaska and Bering Sea).

However, no significant geographic differentiation was

observed in mtDNA haplotypes, suggesting female lineages

in Pacific halibut are mixed throughout Alaskan waters.

Table 4 Mitochondrial control region variable nucleotide positions for 18 H. stenolepis (HST) haplotypes

Haplotype Variable nucleotide positions Gen Bank accession

number
1 15 75 79 86 110 161 169 171 172 173 189 193

HST 1 G C A G T C A A A A T A G EU840228

HST 2 . . . A . . . . . . . . . EU840229

HST 3 . . . . . . . . G . . . A EU840230

HST 4 . . . . . . G . G . . . A EU840231

HST 5 . T . A . . . . G . . . A EU840232

HST 6 . . . A . . . . G . . . A EU840233

HST 7 . . . A . . . C . . . . A EU840234

HST 8 . . . A . . . . . . . . A EU840235

HST 9 A . . A . . . . . . . . . EU840236

HST 10 . . G A . . . . G . . . A EU840237

HST 11 . . . A . . . . . . C . . EU840238

HST 12 . . . A . . . . . . . G A EU840239

HST 13 . . . . . . . . . G . . . EU840240

HST 14 . . . . . . . G G . . . A EU840241

HST 15 . . . A C . . . . . . G A EU840242

HST 16 . . . A . . . G G . . . A EU840243

HST 17 . . . A . T . . G . . . A EU840244

HST 18 . . . . C . . . G . . . A EU840245

Base pair numbering scheme was determined relative to nucleotide position 1 of the control region of Verasper moseri (Accession No.

AB207249; Ortega-Villaizán Romo et al. 2006)

Table 5 Pacific halibut mtDNA haplotype frequencies

Haplotype N

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Aleutian Islands 6 7 0 0 0 7 0 2 3 1 1 0 0 0 0 0 0 1 28

Bering Sea 8 4 0 0 0 3 0 2 0 0 1 1 0 0 0 0 1 0 20

Gulf of Alaska 15 9 3 2 4 4 1 2 2 0 0 1 1 1 1 1 0 0 47

Total 29 20 3 2 4 14 1 6 5 1 2 2 1 1 1 1 1 1 95

The total number of haplotypes sequenced (N) by region and the total number of each haplotype across regions are given

Table 6 Mitochondrial diversity statistics by region for Pacific hal-

ibut haplotypes

Region Nh h p

Aleutian Islands 8 0.8095 0.0068

Bering Sea 7 0.8000 0.0064

Gulf of Alaska 14 0.8446 0.0073

Nh number of haplotypes; h haplotype diversity; p nucleotide

diversity
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Genetic diversity was slightly higher for mtDNA

sequence data (average h = 0.818) compared to micro-

satellite data (average Ho = 0.718), but the scale of

genotypic diversity was similar among fishes from the

three geographic regions at both molecular markers. Other

flatfish studies have shown higher mtDNA diversity com-

pared to diversity found in microsatellite loci (Fujii and

Nishida 1997; Hoarau et al. 2004). In contrast to our

findings, Hoarau et al. (2004) found reduced genotype

diversity in plaice populations from off-shelf habitats (such

as Aleutian Island populations) when compared to those

living in ocean shelf habitats (such as the Gulf of Alaska

and Bering Sea in this study). The theoretical effect of

effective size and dispersal ability on genetic population

structure has been discussed in the literature (Bohonak

1999; Nunney 1999; Eckert et al. 2008). High effective

population size and dispersal ability lead to genetic

homogenization across large areas open to dispersal,

whereas smaller effective size and greater geographic iso-

lation lead to genetic differentiation. Estimates of effective

population size for Pacific halibut across the three regions

based on LDNe were similar. However, lack of precision in

these estimates which all had infinite upper confidence

limits was problematic. Waples (2006) suggested that Ne

results with infinite confidence limits may not accurately

represent effective size due to noncompliance with model

HST1
HST1

HST2

HST13

Gulf of Alaska

Aleutian Islands

Bering Sea

HST9

HST11

HST8

HST7

HST13

HST12

HST15

HST6

HST16

HST10
HST17

HST5

HST3HST4

HST14 HST18

Fig. 2 Minimum spanning

mtDNA haplotype network tree.

Sizes of circles are proportional

to frequencies of haplotypes
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expectations. Our halibut collections were relatively small

for each locality and these data may not be robust under

assumptions used by LDNe. True effective size in Alaskan

Pacific halibut remains unknown as dispersal patterns,

spawning locations and breeding structure in this long-

lived species are poorly studied.

Common mtDNA haplotypes were present in Alaskan

Pacific halibut across all regions and there was no statis-

tical support for independent population structure at this

locus. Previous genetic studies of marine flatfish have been

unable to document significant geographic population

structure using mtDNA (Fujii and Nishida 1997; Hoarau

et al. 2004). The genealogical structure of mtDNA depends

on deep evolutionary history in female lineages and can be

highly variable in marine organisms suggesting well-mixed

populations (Irwin 2002; Wilkins 2004). This appears to be

the case in Pacific halibut in Alaska. Subsequent investi-

gations of many marine fishes lacking biogeographic sub-

division for mtDNA have revealed local population

structure using microsatellite loci (Bentzen et al. 1996;

O’Connell et al. 1998; Lundy et al. 1999; Shaw et al. 1999;

Mclean and Taylor 2001; Ruzzant et al. 2006). In one case

(Aleutian Pacific halibut), our analyses follow this trend of

increased resolution with microsatellite loci.

Deviations from HWE for microsatellite loci are often

poorly reported in the published literature (Salanti et al.

2005). Despite conformance with HWE at all loci when all

sample locations were combined, we reported significant

deviations at the population level for three loci (Hst14,

Hhi56 and Hhi59). Repeated genotyping and quality con-

trol checks for these loci showed no genotyping errors as

described in Cox and Kraft (2006). HWE is an approxi-

mation and specific assumptions built into this test are

rarely met in natural populations (Salanti et al. 2005).

Clearly, halibut populations in this study were relatively

small and probably do not conform to the ‘‘infinite popu-

lation’’ assumption required for this test. Samples of mar-

ine fishes are difficult to obtain from the western and

central Aleutian Islands where there are few villages, no

commercial fisheries, and limited access. Removal of loci

with significant HWE deviation at the population level did

not significantly change our primary Fst results for popu-

lation structure.

Microsatellite analyses did not show significant genetic

differentiation between the two Alaskan shelf populations

of Pacific halibut (Gulf of Alaska and the Bering Sea).

Congruent results from two molecular markers supported a

relatively high level of gene flow between these geo-

graphically distant areas for Pacific halibut. Molecular

studies of other flatfishes have reported a lack of population

structure in fish with high dispersal ranges at large

oceanographic scales (Mork and Haug 1983; Grant et al.

1984; Haug and Fevolden 1986; Vis et al. 1997; Reid et al.

2005; Hauser et al. 2006; Florin and Höglund 2007). Direct

or proximate mechanisms leading to this broad-scale geo-

graphic mixing for Pacific halibut in Alaska remain spec-

ulative. Conventional tagging studies demonstrated

movement of age 1–6 year old Pacific halibut dispersing

from the Bering Sea to the Gulf of Alaska (Skud 1977).

Gene flow facilitated by current exchange and transport of

younger life stages as suggested by Skud (1977) may be

sufficient to effectively mix these halibut populations

genetically. However, these conventional tagging studies

have been based on tag recoveries from fish collected in

their summer feeding habitats and did not record spawning

locations, the point of genetic exchange. Winter spawning

locations for Pacific halibut off the shelf in the Gulf of

Alaska have been previously described (St. Pierre 1984;

IPHC 2001, 1998) and recently confirmed (Seitz et al.

2005; Loher and Seitz 2008), but putative spawning loca-

tions in the Bering Sea have not been well documented. A

recent study using satellite pop-up (PAT) tags on adult

halibut from the Gulf of Alaska and the Bering Sea pro-

vided no evidence of movement of adults during spawning

migrations between these two areas (Seitz et al. 2003,

2007; Loher and Seitz 2006a), although one PAT tag from

a halibut tagged near St. Paul Island in the Bering Sea

popped off during the spawning season near Unimak Pass.

Oceanographic studies have shown that a considerable

portion of the flow from the Alaska Coastal Current moves

northeastward into the Aleutian North Slope Current

through the relatively shallow Unimak Pass (max depth =

160 m; Stabeno et al. 2002). Several other passes are

known to carry currents between the Gulf of Alaska and the

Bering Sea (Stabeno et al. 1999, 2004, 2005; Hunt and

Stabeno 2005; Ladd et al. 2005). This exchange of currents

greatly influences the marine environment for marine birds

and mammals, fish stocks and shellfish in the eastern

Aleutian Archipelago and the southeast Bering Sea (Ladd

et al. 2005). PAT tagging results covered movements from

a small number of fish (N = 9) and it is possible that these

results may not remain consistent with a larger sample size.

We cannot rule out the possibility that Pacific halibut move

through these passes at some life stage contributing to gene

flow between the two locations.

Significant population structure at smaller geographic

scales (individual spawning grounds or bay populations)

has been reported for other flatfishes: Atlantic halibut

(Haug and Fevolden 1986; Foss et al. 1998), plaice (Hoarau

et al. 2002a, b), turbot (Scophthalmus maximus; Bouza

et al. 2002), and Japanese flounder (Paralichthys olivaceus;

Sekino et al. 2003). In this study, microsatellite loci

revealed statistically significant differences in allelic fre-

quencies for Pacific halibut collected from the western and

central Aleutian Islands when compared to fish from the

two proximate Alaskan shelf regions (Gulf of Alaska and
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Bering Sea). The scale of this molecular differentiation,

however, was not large (relatively low FST values) and

inference drawn from these analyses should be considered

preliminary. Additional sampling of Pacific halibut along

the Aleutian Archipelago will help resolve questions sur-

rounding population independence at different scales and

identify potential barriers to gene flow.

It is important to consider mechanisms that may be

contributing to population structure in Aleutian Pacific

halibut. Recent literature has suggested that unique oceanic

characteristics may play a role in fine-scale genetic popu-

lation structure in marine fishes (Logerwell et al. 2007;

Bailey et al. 2008; Selkoe et al. 2008; Cunningham et al.

2009; Galarza et al. 2009) and other marine organisms

(Thornhill et al. 2008; Wilson et al. 2009). Well docu-

mented oceanic characteristics with the potential to impact

Aleutian Pacific halibut include the ocean passes men-

tioned above and the powerful currents that flow within

them. The central and western Aleutian Islands rise steeply

from the sea bed with little or no shelf and are separated by

relatively deep passes with powerful tidal currents. Water

from the oceanic western boundary current, the Alaska

Stream, flows through several deep passes between the

islands in the central and western Aleutian Archipelago

(Ladd et al 2005; Bailey et al. 2008). Many local eddies

and gyres surround these islands (Ladd et al. 2005; Hunt

and Stabeno 2005; Stabeno et al. 2005). Oceanic conditions

have been shown to be important transport mechanisms for

micronutrients (Stabeno et al. 2002, 2005; Mordy et al.

2005) and zooplankton in this area (Coyle et al. 1998;

Coyle 2005), potentially contributing to larval retention

mechanisms. Cunningham et al. (2009) recently presented

evidence that gene flow may be restricted in Pacific cod

(Gadus macrocephalus) where deep-water barriers, such as

underwater canyons or swift currents limit adult dispersal.

Samalga Pass marks a well-described ecological division

of Aleutian waters with strong discontinuity in cold-water

corals, zooplankton, other fishes, marine mammals and

foraging seabirds, including a step change in species

composition (Hunt and Stabeno 2005). If spawning takes

place locally, documented oceanic divides, clockwise

current circulation (see Ladd et al. 2005, Fig. 6), eddies,

and gyres found around islands in the central and western

Aleutians may also contribute to retention for halibut eggs/

larvae.

Seasonal migrations of Pacific halibut in the Aleutian

Islands have only recently been studied (Loher and Seitz

2006b). Loher and Seitz (2006b) PAT tagged 25 adult

Pacific halibut in the western Aleutian Archipelago in

2004. Tags were programmed to release during the winter

spawning season. These fish did not cross local oceanic

passes separating the islands from other shelf or island

habitats (Amukta Pass to the east of Atka, Amchitka pass

between Atka and Attu, and Near Pass to the west of Attu).

Mean dispersal distance of tagged Pacific halibut indicated

that fish from the Aleutian Islands move very little com-

pared to those tagged in the Gulf of Alaska and the Bering

Sea. On average, Pacific halibut from the Aleutians moved

less than 45 km, remaining in local waters throughout the

spawning season (Seitz 2006). Limited dispersal patterns

may be contributing to the genetic population structure we

found for Pacific halibut in the central and western Aleu-

tian Islands.

Because sampling has been sporadic and often not

directed specifically to Pacific halibut, we know very little

about Alaskan Pacific halibut life histories in the Aleutians.

Bathymetric evidence (Ladd et al. 2005; Stabeno et al.

2005; Bailey et al. 2008), recent tagging studies (Loher and

Seitz 2006b) and genetics (this study) suggest that one or

more passes west of Unimak Pass may represent partial

barrier(s) to gene exchange for Pacific halibut in the central

and western Aleutian Islands. Boundaries to other marine

species distribution are associated with some of these

passes (Grant et al. 1983; Logerwell et al. 2007), so it does

not seem improbable that the Aleutian deep-water passes

may affect population connectivity in Pacific halibut as

well.

In summary, behavior and ecology linked to dispersal

have been shown to have significant effects on the popu-

lation dynamics of marine fishes (Botsford et al. 2008). For

flat fishes, larval-stage dispersal can be substantial and over

large distances (Norcross and Shaw 1984). Genetic popu-

lation structure may link the dynamics of populations on

the scale of that dispersal distance. Adult migrations for

spawning in highly migratory marine fishes like Pacific

halibut, clearly effect genetic structure. In long-lived

Pacific halibut we still have not documented individual

reproductive success and fidelity to spawning locations that

would be necessary to generate highly rigorous genetic

population structure. However, genetic results presented

here suggest that dispersal distance and exchange of water

masses north and south of relatively shallow oceanic pas-

ses, may facilitate genetic exchange and gene flow between

Pacific halibut in the Gulf of Alaska and the Bering Sea.

Different oceanic conditions associated with deep ocean

passes flowing through the steep terrain of the Aleutian

Islands potentially contribute to an east/west segregation of

Pacific halibut in the central and western Aleutian Islands

where unique bathymetry and hydrology may provide

sufficient local conditions for Pacific halibut of different

life stages.

Intriguing but inconclusive genetic results have been

reported comparing Pacific halibut from Japan (Grant et al.

1984) and Russia (Bentzen et al. 1998) with populations in

Alaska. A Japanese tagging study of yellowfin sole (Li-

nanda aspera) indicated that populations in the western
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Bering Sea (west of St. Paul Island and Unimak Pass)

remain separate from eastern Bering Sea populations

throughout the year (Grant et al. 1983). Inference gained

from these studies suggests further consideration is needed

for Pacific halibut phylogeography in Asian waters and

genetic relationships between those populations and fish

living in the central and western Aleutian Islands. More

extensive sampling, both biological and oceanographic,

could provide additional insight on fine-scale population

genetic structure of Pacific halibut and this species’

dependence on marine conditions and ocean mechanisms

for dispersal and recruitment.
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